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0. Introduction

Many problems in continuum mechanics involve an incompressl-

bility condition, usually in the form of a divergence constraint.

The numerical discretization of such a constraint presents some

interesting problems with regard to stability. As an important

example we consider the two'dimensional Stokes equations

-AU + VP F in 0 c I 2 ,

(1)

V-U = 0 in 0,

A,; with appropriate boundary conditions on Q. This has the

standard weak formulation

2" 2Find U E Y c [H1 (O)]2  and P e V L (0) such that

(2) a(U,v) + b(v,P) = (F,v) V v c r

b(U,q) = 0 V q e V.

The bilinear forms a and b are given by

a(U,v) = 2 f ij)cjl(y) dx

i'j

* b(v,P) - Vv P dx,

and (F,v) denotes the usual [L2 (o ) 2 inner product. The tensor
1" For

(V) is the symmetric derivative I-v + -v . The
Ij2ax 1 j Xj i

Y and V depend on the boundary conditions. For no-slip

boundary conditions: Y = 1)]2 and V = L2(0) n f q = 0,

for stress-free boundary conditions: V = the orthogonal Distribution/ .
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complement of (cij(v) = 0) in (H I()] 2 and V = L2 (). A

natural discretization of (2) consists in choosing finite

dimensional spaces V N g V, N _V and determining

UN E N and PN c VN such that

(3) a(UNV) + b(V, PN) = (F,v) V v E YN

b(UNq) = 0 V q E VN .

The main obstacle in connection with (3) is to find spaces Y N

and V N so that the discretization is stable and at the same time

has good approximation properties. A reasonable requirement

concerning stability seems to be

(4) IlU - _UNi 1  + P - PNIIL2  C min iU - VllI + min lip - qj 2]'
H L - N H N

with C independent of the dimension variable N. It is well

known that the Babuska-Brezzi condition

Jo - q dx
(5) min max Z c > 0,

-qv N \ (0 )  _vY"N lIxtl lllqll 2

with c independent of N, is sufficient to quarantee (4) (cf.

[ (2], [7]). If the pressure spaces V N are chosen equal to V.VNP

then (5) is equivalent to the requirement that the divergence

operator

V :r -- v
N N

has corresponding right inverses

Nauo N N

that are uniformly bounded in V(L 2;H ) In this case (5) is both

2



a necessary and sufficient condition that the quasi-optimality

estimate

IIU - UNii I C min 11U - V11
VH vEY N H1

holds for arbitrary admissible force F (cf. [13]).

The most natural low degree finite element spaces often fail

to satisfy the Babuska-Brezzi condition, except on very special

triangnllations. A remedy is to appropriately enlarge the velocity

space or to deplete the pressure space; such approaches are

analyzed for continuous plecewise linear (bilinear) velocities
:" 5

with piecewise constant pressures in (6] and [11] respectively.

For continuous piecewise quadratic velocities one has the well

_ .known Taylor-Hood element, with continuous piecewise linear

pressures (for the analysis leading to (5), see (4] and (14]).

Enlarging the velocity space or depleting the pressure space is

* also in general necessary for cubic velocities and quadratic

pressures (cf. (13]).

For continuous piecewise polynomial velocities of total

degree 5 p, p 4, the situation is quite different. For an

arbitrary triangulation the range of the divergence operator

acting on the velocity space has a very simple characterization --

it consists of all piecewise polynomials of total degree 5 p - 1,

except for a certain constraint at so-called singular vertices

(cf. [12]). Furthermore, for fixed p > 4, the divergence operator

possesses maximal right inverses, the norms of which are bounded

independently of the mesh size h. To paraphrase: the condition

(5) is satisfied for such velocities if the pressure space, VN'

S3
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is chosen to be V.YN. Using the analysis in (15] we are able to

prove that the same right inverses have V(L2 ;H ) norms, which

are bounded by some power of p, for fixed h. These results

(p ? 4) are valid also for piecewise polynomial spaces with a

homogeneous Dirichlet condition on 00 (assuming, of course, 0

Is polygonal).

In this note we show with a few examples, theoretical as well

as computational, that it is not in general possible to find

maximal right inverses for the divergence operator, acting on

entire polynomials of degree 5 p, the norms of which are bounded

in (L 2;H 1), uniformly in p. We discuss both spaces of total

*and separate degree s p, as well as spaces with and without

boundary conditions.

The lack of uniformly bounded right inverses for the discrete

case is somewhat surprising when compared to the continuous case:

it is easy to see that there exists a right inverse (V.)-  which

5 +1 2 s+1 2maps Hs = V.(Hs ) boundedly into (H ) , V s >- 0. A

similar result holds with homogeneous Dirichlet boundary

.5- conditions, even for non-smooth (polygonal) domains 0 (cf. [1]).

Methods that use high degree polynomials to approximate the

* solution to the Stokes equations are quite common, whether they be

variationally based spectral methods, or collocation based pseudo-

spectral methods (cf. [10]). Another possibility is the so-called

* p-version of the finite element method (cf. (3]): it uses a rather

coarse mesh (triangulation or lattice) and achieves convergence by

including, in a variational formulation, piecewise polynomials of

* high degree relative to this mesh. Even though the Babuska-Brezzi

4
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condition may only be satisfied with a constant approaching zero as

some negative power of p, these methods seem to have (nearly)

optimal convergence rates as far as the velocity is concerned. We

briefly return to an explanation of this (at least for variational

methods) towards the very end of this paper. In the special case

of periodic boundary conditions it is normal to consider spectral

or pseudospectral methods based on trigonometric polynomials instead

of polynomials. The resulting methods are much more likely to be

uniformly divergence stable (see, e.g., (8]), however, they are

restricted in their applicability due to the boundary conditions.

To complete the introduction, let us give an interpretation

of the constant

Jv. q dx
0

mn max =

qEV N\{O) vEPN 1IYI HItq 2 NP
H L

in terms of the associated matrices, when VN = V-YN. In order to

do so, we first need to specify our choice of norm on H 1]2  of

the many equivalent norms we take

2

S Irfy11 d~ +1  I~dx~J
H if=

N MLet - be a basis for rN and let kk= be a basis for
M,N .N,N

*V = V-YN" The matrices A = (ake)k= 1t=1, B = (bk)k=l, e=1 and

M,M
C = (c k)k.1e= are defined by

M

(6.a) V. = ak k'k' 1 < d N,

k=1

5



2

(6.b) bke = f1 i  k dx + J-k dx- J dx,

1 ! k,L t N, and

(6. c) Cke ripj dx, 1!k sM.

A is the discrete representation of the divergence operator and

(B.,.) and (C.,.) represent the quadratic forms llVi21 and
H

lq 22 respectively.
L

f%,A', With these definitions it is easy to see that pN is the

smallest singular value of the N x M matrix B, and

V ~' this in turn is the square root of the smallest eigenvalue of the

positive definite symmetric M x M matrix

(7) D C 1 /2AB- ATC 1/2

For any q E VN let (V.)N q * Y N denote the element of minimal

H -norm that has q for its divergence. By a "worst possible

pressure" (as far as divergence stability is concerned) we mean a

q 0 E V N' llq0i1 L2 = 1, on which the "minimal norm" right inverse

(V.)N' attains its operator norm. If x C M denotes a unit

eigenvector for the matrix D, corresponding to the smallest

eigenvalue, pN 0 then

N~x, M

(8) q0 = (C-/2x) IV

- J=1

is a worst possible pressure.

6
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1. Theoretical and Computational results.

Let R denote the square (-1,1) x (-1,1). We first

consider polynomials of separate degree s p, I.e., the velocity

2
space is (Qp) where

p

(9) Qp = span(xmxn : 0 -< mn 5 p),
*1J2

and the corresponding pressure space is

(10) V.(Q )2 = span(xmxn : 0 < m'n < p, m + n < 2p).
p 1 2

Note that we use p as a subscript instead of the dimension

variable N = (p + 1)2 . As before (V.)- denotes the right
p

inverse with minimal H (R) norm.

Proposition 1.

-12 2The operator (V.)p 7.(Q p) --# (Q) , p 1 1, considered

as an operator from a subspace of L 2(R) to a subspace of

(H (R))2 satisfies

cp S If (V)pIt 2 1 Cp,
(L ;H )

with constants 0 < c and C independent of p.

Before giving a proof of Proposition I we make a few

observations about orthogonal polynomials. Let en(x) denote the

Legendre polynomial of degree n, with the standard normalization

(11) 2 dx
n

J -1

It is not difficult to see that

7
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(12) o t - (t (X) - n (x)) n 1.
jn 2n+i n+1 n-I'

-1

The polynomial f may be written as a telescoping series* n

[n/2]-1

t = (+ I' n odd
n n-2j n-2(j+l) ' t n even

J=O

and consequently

Xn2 + /-{ n odd

t (x) = (2(n-2j-l)+l) r t n v-n i...0n'J1 ~ n even
j=o -1

From this we conclude that J[lxCejdx is of the order

6] -1
[n/2]-1

Z , i.e.,

J-0

(13) J 3-d.e dx is of the order n2

-1

Let qn(x), 0 5 n -c p denote the polynomials

qn(x) = e(x), 0 ! n < p
(14)

x

q p (X) = p-1

-1

(the notation should properly be q since the definition of

q n depends on p, but we drop the superscript for convenience).

A simple computation gives that the polynomial

r(x) =atp-2 + 3 jp-1 , p > 2,

f-4



satisfies

2 [a,2 13 2 3Pg + 2< (r(x) 2 dx !5 6 + 2

2-p (2p+1)(2p-1 ) -1 (2p-3)(2p-1)2l

Since (enn u p- py } are mutually orthogonal in L , and

x
since they are also orthogonal to tp-2 and f ep_ 1 , It follows

that

a nqnlX) dx Is equivalent to
- 1 n=O

(15) p-i

0 ,~ a2 (n+l)-1 +a(pl -
a (=, + a2 (P+1 with constants

-' that are independent of p.

It is convenient to work with

(qm(xI)qn(x2 ) :0 < m,n < p, m + n < 2p}

2as a basis for V.(Q )2 Based on (15) we get that if

p p

q = amn qm(xI )q nx2) ,

"" m, n=O
m+n<2p

then

(q)2dx is equivalent to
0

(16)
2 11 2 2 -1 -3

(atm) (M+1) (ni) 1 + ((am) +(a p) )(m+I) p

m<p m<p
n<p

with constants that are independent of p.

V '@ -1V
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We are now ready for the proof of proposition 1:
2

Given q c V-(Q ) we have
P

q = qmnq (xl )q n (x2 )

m, n=O
*m+n<2p

for some set of coefficients (a mn. Define

X1 X 1

a mn q qM]n(x 2 ) + a JmpJX q Mqp(x 2 )

n<m<p -1 m<p -1

, • .X 2  X 2

~~~~ a~ q3 x) + ap (x) f q~• mn q m (xl)f q n n pq

m5 n<p -l n<p -1

It is clear that u E (Q with V~u = q. It remains to

estimate the Hl-norm of u. Using (16) we immediately get that

;1. II(9 llL U1 11 2. u Cjjqll.
L (R) (R) (R)

also

.J 3  0 ,for p > 2,
,R 00

and therefore

,I f A 1 - c1lq 2
R 2(R)oR

Concerning au :
! ll -- ;ux II R

2

(17 m)= mn( LP)112
2

: am m dx~ ( x2 + xp2L(R
-n<m<p -1 m<p -1

:< C 1+11 - I amn [!n + L 2 1-1,1),

m<p n=O

10



because of the identities (11) and (12) and the

L2 -orthogonality of the Legendre polynomials. From (17) we get

by means of the triangle inequality, Schwarz inequality, and the

estimate (13)
lb- ;u I in-I m-1v

2 C +m+)- 3 (a 2 2:n2 + (amp) ,11Y7 u11 (R) 1=: m

m<p n=o n=o

the right hand side of which is bounded by

0C [ Z(amn)2 + Y(amp )2(m+) 1.

- n<m<p m<p

Using the above estimate in combination with (16) we get

iC UIJ2 < CP2 11q1122
L (R) L(R)

a 2
The same estimate holds for TIIR--u 2 l 2 In summary we have~L2(R)

thus established

I11 1 !5 Cp Ilql 2

and since (V-) q is the field of minimal H1-norm it follows

that

PI( p 8( 2  1 5 Cp.

To verify the second inequality of this proposition, consider

q =r(xI)tp(x2 )

for some fixed polynomial r (of degree 5 p - 1). As a basis

for Q we choose

|0 (q m(x )qn(X2 0 5 m,n s p).

o1



2
For an arbitrary u E (Q p) there exist coefficients (a mn) and

(mn) such that

pu, L a. mnqm (x1)q n (x2)

m, n=O

p

U 2  L Bmnqm(X )qn(x2 )

m, n=O

-f u + -u q then we must necessarily have
ax -x1 ax 2u2

L a Ip[l--qm(X1) Iq P C dx

m=O -1

-1 1v._(Xx2)Vp(X2)dx2 = r(x1 ) t2 dx.
-1 -1

Due to (12) and (14) it follows that

d[p
U'-..,a .,-q"] = (2p - 1)r,

and therefore

x1

(18) U1  q qn (x2 ) man q m(X 1) q P(X 2 )(2p-1)(J r 0c.

n<P m<p -1

a After differentiation with respect to x2

ad q x ) . q (x) + t (x )(2p-l)(F r + c),
* x2 -1 = ~dx nj 2 L..mn M 1 p-i 2J

n<p M!5p -1

from which it now follows (by orthogonality) that

12



1(19) J -t~..u]dx 2(2p-1) J (J r +c dx

'IR -1'

- 2(2p-1) 1r dx

-1 -11 (-1,1)

At the same time

Iq*I *L 2 R)  =2p+1 Ilrl L 2 (_1 ,1)'

and so we have proven that for any u e Qp with V-u = q one

has

IIRI 1 cp Ilq* l1 2
H(R) L(R)

(for fixed r). This verifies the lower bound on the norm of

-1(V-)
p

We now consider polynomials of total degree 5 p. Without

2
boundary conditions the velocity space is (P ) , where

m n

p =span(xlx : m + n < p),
ap 1 2

2

and the corresponding pressure space is V.(P p) = Ip-l" First

some computational results for the domain R = (-1,1) x (-1,1).

As a basis for Fp in these computations we pick products of

integrals of Legendre polynomials (supplemented by the constant

function):

I, j Zne 0 < m,n . p-i,

(20) 
1 -1

f J m  t en 0 m,n and m+n 5 p-2.

11
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As a basis for V-(?p)2 =FP-1 we pick

(21) tm(x )tn(x 2 ) 0 5 m,n and m + n s p-1.

The top plot in figure 1 shows the smallest eigenvalue of the

matrix D (as defined In (7)) for p varying between 1 and

18. The eigenvalues were computed using two EISPACK subroutines:

*. first the matrix was transformed (by orthogonal similarity

transformations) into a tridiagonal matrix using subroutine TRED2,

then the eigenvalues were computed by the QL method (an obvious

2. variant of the QR method) using subroutine TQL2. The S(L2 ;H1

V norm of the "minimal norm" right inverse is the reciprocal square

* root of the smallest eigenvalue. The numbers do not clearly

indicate whether these right inverses are bounded independently of

p -- if anything they seem to indicate that the norms grow as

p -- , but only as a very small power or possibly a logarithm of

p (the corresponding solid line was computed by linear regression
.- >"-0.3975

on the last four points, it is proportional to p ). We

note that by a slight change in the proof of Proposition 1 one can

N show that the present right inverses are bounded in (L 2;H 1 ) by

Cp, however, that is clearly too conservative. The situation is

* more clear cut in the case when homogeneous Dirichlet boundary

conditions are prescribed. The velocity space is then ()2

-. where
= r (vo = 0)

P P

and the pressure space is V.(?p) 2 p- A simple count of

dimensions gives that V.(?p) has co-dimension 9 in fp_1 ,

p 1 5. V'(?p)2 is the common nullspace for the following nine

14



Smallest positive eigenvalue versus polynomial degree p
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linearly independent functionals: the integral over R, point

[+n p -2

evaluation at each of the corners of 8R and evaluated

at the center of each side of aR. As a basis for ? we take
p

the same elements as in (20) except for those in the first line,

and those corresponding to m = 0 or n = 0 in the second line.

Instead of computing the matrices A and C by using a basis for

V. (p) 2 we use a basis for p1 n f O q = oil, the same as in

(21) except for the constant function. The only effect of this

in terms of eigenvalues and eigenvectors is to add 0 as an

eigenvalue of D with multiplicity 8, p 2 5 (in the case

*i p = 4, V'(p) 2 only has codimension 8 in ?p-l and the

P. corresponding multiplicity of 0 becomes 7). The lower plot in

figure 1 shows the smallest positive eigenvalue of D for p

varying between 4 and 18; the elgenvalues were computed as

before, using EISPACK. The P(L2;H 1) norm of the "minimal norm"

right 2
right inverse (V.) p V. (?p ) ) (Pp ) is the reciprocal square

root of the smallest positive eigenvalue. The numbers clearly

indicate that the norms are not bounded uniformly in p. Based on

these numbers it is reasonable to conjecture that the norms grow

at least linearly in p and at most as Cp3/2  (the solid line on

the graph of eigenvalues is proportional to p- 2, corresponding

to linear growth of the norms). What is more, we can actually

5 prove the lower bound:

I16
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A Proposition 2.

-1 0 2 02Let (V-) V.(9) f'~() p 4, denote the right
p p p p I

inverse with minimal HInorm. Considered as an operator from a

subspace of L 2(R) to a subspace of (H I(R)) 2this satisfies

cp 2S 11(ViI 2 1
p 1 (L 2;H 1

with c > 0, independent of p.

Proof.

Let q (x11 x 2) 1 e(x1) tp-3. It is clear that

-11-

the other hand, if u E ?)2 is an arbitrary velocity field with

V - u q *then

m+nsgp-2 Xi JX2n

m,n -1- -1

m+nsp-2 K~ X

L 'mn J m n
m,n-1 -1

and

m+n!5p-2 X 1X

Z m tae (x 1) 1 en + fmn(J em)e(x 2 )J e1 (x 1 ) J t -C
m,n=l 1- 1 p

Using (12) and the linear independence of the Legendre polyno-

mials we get

17



p-3 X -
(22) 1a I n f~ -n Y - 2ne'n~x2) = tp3

n1 -1 n=1 -1

since these are the respective coefficients of t 1(x1) The

Identity (22) implies

alp-3 1

and since

a --u m+n :5p-2 a 1(
TX2Z an(Jem nx 2)

m,n=i -1

m+n:5p-2

Y 1 a~~i~i -i.(xiJnx)

* m, n=1

it follows that

(23) l-u 111 2  pa 3  f'; fe 2 _
a2 L (R) -1 -

4
9(2-p-5)

A simple computation gives

jj*128 1

02R j2-)2-)2-)

and therefore, in light of (23),

*H (R) 6L2(R)*

Since u is an arbitrary field in (? ) 2, with V *u q*

this gives the desired lower bound on the operator norm.



Figures 2 and 3 show contour plots of worst possible pressures,

in t1- sense defined at the end of the introduction, for p = 7, 8,

14 and 15. These pressures are elements of V.( ° , and they
-i 1o 2 2

have the property that the right inverses (V.)p : V.(p )2 0 p2

2 1attain their B(L ;H1) norms there. Solid lines in the plots

correspond to positive values, dashed lines correspond to negative

values. On each plot the interval between contour lines is

indicated at the bottom and so is the entire value range of the

pressure.

We note several features:

(1) There is a marked difference between worst pressures for

* even and odd p. This correlates well with the lowest plot in

figure 1, which really seems to consist of two slightly different

curves, one for even p and one for odd p.

(2) The value range for a worst pressure grows as p in-

creases, and the extreme values are clearly attained on 0O.

(3) For p odd and sufficiently large there is a local

checkerboard pattern developing, similar ':o that found in

connection with some unstable low order elements (see, e.g., [5]

for bilinear-constant velocity-pressure approximation).
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2. Conclusions and final remarks.

We have shown with a few examples that one cannot in general

construct maximal right inverses for the divergence operator,

2 1A. whose B(L ;H) norms are uniformly bounded as the polynomial

degree increases. We do not think that the square domain is

extremely special in this regard, and we believe that similar

examples can be found on many other polygonal domains.

We do not, however, claim that it is impossible to find

domains for which uniformly bounded maximal right inverses exist.

Indeed one such class of domains (for polynomials of total degree

5 p, with no boundary conditions) are the ellipses:

Example 2.1.

2 2Let E = ((XX2): ax I + bx < 1), 0 < a.b. The Laplace

ra2 r '92 ino0T
operator A: LaxJ-1 + ax2J maps Pp+i p1 Te space

onth 2 2_on the domain E, is the same as (ax + b

and since A has no nontrivial null vectors with homogeneous

Dirichlet boundary conditions, it follows that A Is an

isomorphism from Pp+ l onto FP- l" The operator

(V.)- = VA-1 : p --+ (F )2 is a uniformly bounded maximal right
P pp-1 p

inverse for the divergence operator on the domain E.

a-.. Where no boundary conditions are involved, unboundedness of

the "minimal norm" right inverse in spaces of entire polynomials

'(on a square, say) immediately leads to unboundedness in spaces of~piecewise polynomials relative to a fixed partition (a lattice).

We expect that the "minimal norm" right inverses for truly
A.
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piecewise polynomials will inherit some of the (likely) extra

unboundedness associated with homogeneous boundary conditions.

For example, on a lattice (with more than one rectangle) It would

--' not be surprising, if the right inverses corresponding to spaces

of piecewise polynomials of separate degree p have B(L 2 ;H

norms, that grow faster than p.

Lack of divergence stability as evidenced by the fact that

the best lower bound in (5) might behave like p-. a > 0,

surprisingly does not lead to suboptimal order of convergence for

U.' the velocities, as p --+ a (provided we use the divergence of the

velocity space as the pressure space). This may be explained by

* an interpolation argument, the idea of which originates in [3).

The explanation is particularly simple with stress-free boundary

conditions on a simply connected domain: since U is a pro-

jection of U we get

(24) 1_u - _ 1 PH 1 c1l9ll 1
- H ( ) H (0)

and since the lower bound in (5) is - p we can also prove

(cf. [13])

'IU - I 1 Op min Il - I1
SH (Q) v H()

where the minimum is taken over the full space of discrete

2 2
velocities ((Qp) or (?) ). Standard approximation results

0 yield

-M+a M 0.

(25) IIU - -p91 ) 1 CP I M+1 , M 0
H(WO C H (Q)

0 ,

12



For fixed M we can interpolate a fraction 0 between (24)

and (25) to get

liu - upll 1( )  -k+ak/M IIlI H k+I 0 < k < M.

ak

By choosing M sufficiently large (M > -- ) we conclude that

( 2 6 ) Il u - 1_ kl , l l k +lQH 10 ) ,cH k  (0)

for any c > 0. Modulo c the estimate (26) reprosents the

optimal order of convergence for general U in H k+(0). More

details are found in (15] and [16], where the same argument is

used in the context of the equations of elasticity (for a nearly

incompressible material).

We do believe that the lack of divergence stability affects

the accuracy of the pressure approximation much more drastically,

and we expect that a certain postprocessing (filtering) of the

pressures may be necessary as p d-..,, .
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